Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Nazan Ocak, ${ }^{\text {a }}$ Samil Ișık ${ }^{\text {a }}$ and Mutlu Dilsiz Aytemir ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayís University,
TR-55139, Kurupelit-Samsun, Turkey, and
${ }^{\text {b }}$ Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, TR-06100, Sihhiye, Ankara, Turkey

Correspondence e-mail: nocak@omu.edu.tr

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.049$
$w R$ factor $=0.162$
Data-to-parameter ratio $=15.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

Ethyl 4-(3-hydroxy-6-methyl-4-oxo-4H-pyran-2-ylmethyl)piperazine-1-carboxylate

The title compound, $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{5}$, was synthesized as a Mannich base and characterized by IR, ${ }^{1} \mathrm{H}$ NMR, GC mass spectra and elemental analysis. The piperazine ring displays a chair conformation, and the crystal structure is stabilized by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ intra- and intermolecular hydrogen bonds.

Comment

The title compound, (I), is being studied for its possible biological properties due to the presence in it of the allomaltol group.

The title compound consists of 2-methyl-5-hydroxy-4H-pyran-4-one (allomaltol) and a piperazine ring, which is connected on one N side to the methylene bridge at the 2-position of the pyranone ring and on the other N side to the carboxylic acid ethyl ester group.

The bond lengths and angles observed in the allomaltol group are comparable to those found in maltol (3-hydroxy-2-methyl-4H-pyran-4-one; Burgess et al., 1996).

In the piperazine ring, the bond lengths and angles conform to those found previously (Yogavel et al., 2002; Thirumurugan et al., 1998; Koysal et al., 2003). The piperazine ring adopts a chair conformation, with a total puckering amplitude of $Q_{T}=$ 0.566 (2) \AA (Cremer \& Pople, 1975). The sums of the bond angles around atoms N 1 and N 2 are 337.1 and 359.8°, respectively, because atom N 1 is 0.411 (1) \AA out of the plane through atoms C6, C7 and C9, and atom N2 is 0.040 (2) \AA out of the plane through atoms $\mathrm{C} 8, \mathrm{C} 10$ and C 11 , indicative that atom N 1 is $s p^{3}$ while atom N 2 is $s p^{2} \pi$-conjugated with the carboxy group. This is also shown by the values of the N1-C6 and $\mathrm{N} 2-\mathrm{C} 11$ bond distances. The plane through the C atoms of the piperazine ring makes a dihedral angle of $77.43(4)^{\circ}$ with the allomaltol group.

There are one intermolecular $(\mathrm{O}-\mathrm{H} \cdots \mathrm{O})$ and five intramolecular $(\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O})$ hydrogen bonds. Atom O 2 is involved as a donor in an inter- and intramolecular bifurcated hydrogen bond. The $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ intramolecular interactions, shown in Fig. 2, help to stabilize the structure.

Received 24 February 2004

Accepted 11 March 2004
Online 24 March 2004

Figure 1
A view of (I), with the atom-numbering scheme. Displacement ellipsoids of non-H atoms are drawn at the 50% probability level.

Figure 2
The hydrogen-bond network in (I).

Experimental

All chemicals used in this study were supplied by Merck (Darmstadt, Germany) or Aldrich Chemical Co. (Steinheim, Germany). Compound (I) was prepared by the reaction of ethyl 1-piperazinecarboxylate (0.01 mol) and allomaltol $(0.01 \mathrm{~mol})$ in methanol (20 ml) with 37% formalin (1 ml). The mixture was stirred vigorously for 25 min . The resulting precipitate was collected by filtration and washed with cold methanol. Recrystallization from chloroform/ petroleum ether ($313-333 \mathrm{~K}$) gave a white crystalline solid in 30% yield (m.p. $431-432 \mathrm{~K})$. IR $\left(\mathrm{cm}^{-1}\right): 1700(\mathrm{C}=\mathrm{O}, s), 1613(\mathrm{C}=\mathrm{O}, s$, pyranone), $1459(\mathrm{C}=\mathrm{C}, s)$ and $1221(\mathrm{C}-\mathrm{O}, s) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, 80 MHz, p.p.m.): $1.20\left(3 \mathrm{H}, t,-\mathrm{CH}_{3}\right), 2.30\left(3 \mathrm{H}, s, 6-\mathrm{CH}_{3}\right), 2.50(4 \mathrm{H}, t$, $J=4 \mathrm{~Hz}$, piperazine $\left.-\mathrm{CH}_{2}-\right), 3.40\left(4 \mathrm{H}, t, J=4 \mathrm{~Hz}\right.$, piperazine $\left.-\mathrm{CH}_{2}-\right)$, $3.85\left(2 \mathrm{H}, s,-\mathrm{CH}_{2}-\right), 4.10\left(2 \mathrm{H}, q,-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 6.20\left(1 \mathrm{H}, s, \mathrm{H}^{5}\right) ; \mathrm{GC}$ (MS) m/e: 116, 111, 85, 69, 56 (base peak). Analysis calculated for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{5}$: C 56.74, H 6.80 , N 9.45%; found: C 56.67 , H $6.42, \mathrm{~N}$ 9.42\%.

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{5}$	$D_{x}=1.344 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=296.32$	Mo $\mathrm{K} \mathrm{\alpha}$ radiation
Monoclinic, $C 2 / c$	Cell parameters from 15639
$a=24.069(3) \AA$	reflections
$b=6.1796(4) \AA$	$\theta=1.7-29.6^{\circ}$
$c=19.788(2) \AA$	$\mu=0.10 \mathrm{~mm}^{-1}$
$\beta=95.513(8)^{\circ}$	$T=23(2) \mathrm{K}$
$V=2929.7(5) \AA \AA^{3}$	Prism, colourless
$Z=8$	$0.60 \times 0.55 \times 0.32 \mathrm{~mm}$

$$
\begin{aligned}
& D_{x}=1.344 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo K } \alpha \text { radiation } \\
& \text { Cell parameters from } 15639 \\
& \text { reflections } \\
& \theta=1.7-29.6^{\circ} \\
& \mu=0.10 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Prism, colourless } \\
& 0.60 \times 0.55 \times 0.32 \mathrm{~mm}
\end{aligned}
$$

Data collection

Stoe IPDS-II diffractometer

ω scans

Absorption correction: by
integration (X-RED32;
Stoe \& Cie, 2002)
$T_{\text {min }}=0.937, T_{\text {max }}=0.970$
16025 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.049$
$w R\left(F^{2}\right)=0.162$
$S=1.10$
2888 reflections
191 parameters
H -atom parameters constrained

2888 independent reflections
2388 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.074$
$\theta_{\text {max }}=26.0^{\circ}$
$h=-29 \rightarrow 29$
$k=-7 \rightarrow 7$
$l=-24 \rightarrow 24$
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0946 P)^{2}\right.$
$+0.909 P]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.37 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-0.33$ e \AA^{-3}
Extinction correction: SHELXL97
Extinction coefficient: 0.0072 (13)

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

O1-C2	$1.351(2)$	C9-C10	$1.511(2)$
O1-C1	$1.376(2)$	N2-C11	$1.340(2)$
C4-O3	$1.235(2)$	N2-C8	$1.446(2)$
C4-C3	$1.427(3)$	N2-C10	$1.459(2)$
C4-C5	$1.457(2)$	C3-C2	$1.342(3)$
C5-C1	$1.338(2)$	O4-C11	$1.213(2)$
C5-O2	$1.357(2)$	C8-C7	$1.519(3)$
C9-N1	$1.452(2)$	N1-C6	$1.463(2)$
N1-C9-C10	$110.40(14)$	N2-C8-C7	$109.25(14)$
C11-N2-C8	$121.14(16)$	N1-C7-C8	$109.62(15)$
C11-N2-C10	$125.39(17)$	C9-N1-C7	$111.21(13)$
C8-N2-C10	$113.23(15)$	C9-N1-C6	$112.41(13)$
N2-C10-C9	$110.17(14)$	C7-N1-C6	$113.51(14)$

Table 2
Hydrogen-bonding geometry ($\AA{ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{O}^{\mathrm{i}}$	0.82	1.97	$2.6941(18)$	147
$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{O} 3$	0.82	2.33	$2.7527(18)$	113
$\mathrm{C} 6-\mathrm{H} 6 A \cdots \mathrm{O} 2$	0.97	2.53	$2.909(2)$	103
$\mathrm{C} 7-\mathrm{H} 7 A \cdots \mathrm{O} 1$	0.97	2.54	$3.060(2)$	114
$\mathrm{C} 8-\mathrm{H} 8 B \cdots \mathrm{O} 4$	0.97	2.39	$2.784(3)$	104
$\mathrm{C} 10-\mathrm{H} 10 A \cdots \mathrm{O} 5$	0.97	2.27	$2.696(2)$	106

Symmetry code: (i) $\frac{1}{2}-x, \frac{3}{2}-y,-z$.
H atoms were included in calculated positions and treated using a riding model $\left[\mathrm{C}-\mathrm{H}\right.$ (aromatic) $=0.93 \AA$ and $\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{2}\right)=0.97 \AA$, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}\left(\right.$ parent C atom); $\mathrm{C}-\mathrm{H}\left(\mathrm{CH}_{3}\right)=0.96 \AA$ and O $\mathrm{H}=0.82 \AA$, with $U_{\mathrm{iso}}(\mathrm{H})=1.5 U_{\text {eq }}($ parent C, O atom $\left.)\right]$.

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: $X-A R E A$; data reduction: X-RED32 (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett \& Johnson, 1996); software used to prepare material for publication: WinGX (Farrugia, 1999) and PARST (Nardelli, 1995).

References

Burgess, J., Fawcett, J., Russell, D. R., Hider, R. C Hossain, M. B., Stoner, C. R. \& Helm, D. van der (1996). Acta Cryst. C52, 2917-2920.
Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Koysal, Y., Işık, Ş., Köksal, M., Erdoan, H. \& Gökhan, N. (2003). Acta Cryst. E59, o1975-o1976.

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany.
Thirumurugan, R., Sundura Raj, S. S., Shanmugam, G., Fun, H.-K. Chinnakali, K., Chantrapromma, S. \& Marappan, M. (1998). Acta Cryst. C54, 780781.

Yogavel, M., Selvanayagam, S., Velmurugan, D., Shanmuga Sundara Raj, S., Fun, H.-K., Marappan, M. \& Kandaswamy, M. (2003). Acta Cryst. E59, o83o85.

