Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Nazan Ocak,^a* Şamil Işık^a and Mutlu Dilsiz Aytemir^b

^aDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayís University, TR-55139, Kurupelit-Samsun, Turkey, and ^bDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, TR-06100, Sıhhiye, Ankara, Turkey

Correspondence e-mail: nocak@omu.edu.tr

Key indicators

Single-crystal X-ray study T = 293 KMean σ (C–C) = 0.003 Å R factor = 0.049 wR factor = 0.162 Data-to-parameter ratio = 15.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

Ethyl 4-(3-hydroxy-6-methyl-4-oxo-4*H*-pyran-2-ylmethyl)piperazine-1-carboxylate

The title compound, $C_{14}H_{20}N_2O_5$, was synthesized as a Mannich base and characterized by IR, ¹H NMR, GC mass spectra and elemental analysis. The piperazine ring displays a chair conformation, and the crystal structure is stabilized by $O-H\cdots O$ and $C-H\cdots O$ intra- and intermolecular hydrogen bonds.

Received 24 February 2004 Accepted 11 March 2004 Online 24 March 2004

Comment

The title compound, (I), is being studied for its possible biological properties due to the presence in it of the allomaltol group.

The title compound consists of 2-methyl-5-hydroxy-4*H*-pyran-4-one (allomaltol) and a piperazine ring, which is connected on one N side to the methylene bridge at the 2-position of the pyranone ring and on the other N side to the carboxylic acid ethyl ester group.

The bond lengths and angles observed in the allomaltol group are comparable to those found in maltol (3-hydroxy-2-methyl-4*H*-pyran-4-one; Burgess *et al.*, 1996).

In the piperazine ring, the bond lengths and angles conform to those found previously (Yogavel *et al.*, 2002; Thirumurugan *et al.*, 1998; Koysal *et al.*, 2003). The piperazine ring adopts a chair conformation, with a total puckering amplitude of $Q_T =$ 0.566 (2) Å (Cremer & Pople, 1975). The sums of the bond angles around atoms N1 and N2 are 337.1 and 359.8°, respectively, because atom N1 is 0.411 (1) Å out of the plane through atoms C6, C7 and C9, and atom N2 is 0.040 (2) Å out of the plane through atoms C8, C10 and C11, indicative that atom N1 is sp^3 while atom N2 is $sp^2\pi$ -conjugated with the carboxy group. This is also shown by the values of the N1–C6 and N2–C11 bond distances. The plane through the C atoms of the piperazine ring makes a dihedral angle of 77.43 (4)° with the allomaltol group.

There are one intermolecular $(O-H\cdots O)$ and five intramolecular $(O-H\cdots O \text{ and } C-H\cdots O)$ hydrogen bonds. Atom O2 is involved as a donor in an inter- and intramolecular bifurcated hydrogen bond. The $C-H\cdots O$ intramolecular interactions, shown in Fig. 2, help to stabilize the structure.

Figure 1

A view of (I), with the atom-numbering scheme. Displacement ellipsoids of non-H atoms are drawn at the 50% probability level.

Figure 2 The hydrogen-bond network in (I).

Experimental

All chemicals used in this study were supplied by Merck (Darmstadt, Germany) or Aldrich Chemical Co. (Steinheim, Germany). Compound (I) was prepared by the reaction of ethyl 1-piperazinecarboxylate (0.01 mol) and allomaltol (0.01 mol) in methanol (20 ml) with 37% formalin (1 ml). The mixture was stirred vigorously for 25 min. The resulting precipitate was collected by filtration and washed with cold methanol. Recrystallization from chloroform/ petroleum ether (313-333 K) gave a white crystalline solid in 30% yield (m.p. 431–432 K). IR (cm⁻¹): 1700 (C=O, s), 1613 (C=O, s, pyranone), 1459 (C=C, s) and 1221 (C-O, s); ¹H NMR (CDCl₃, 80 MHz, p.p.m.): 1.20 (3H, t, -CH₃), 2.30 (3H, s, 6 -CH₃), 2.50 (4H, t, J = 4 Hz, piperazine –CH₂–), 3.40 (4H, t, J = 4 Hz, piperazine –CH₂–), 3.85 (2H, s, $-CH_2$ -), 4.10 (2H, q, $-CH_2CH_3$), 6.20 (1H, s, H⁵); GC (MS) m/e: 116, 111, 85, 69, 56 (base peak). Analysis calculated for C14H20N2O5: C 56.74, H 6.80, N 9.45%; found: C 56.67, H 6.42, N 9.42%.

Crystal data

$C_{14}H_{20}N_2O_5$	$D_x = 1.344 \text{ Mg m}^{-3}$
$M_r = 296.32$	Mo $K\alpha$ radiation
Monoclinic, $C2/c$	Cell parameters from 15 639
a = 24.069 (3) Å	reflections
b = 6.1796 (4) Å	$\theta = 1.7-29.6^{\circ}$
c = 19.788 (2) Å	$\mu = 0.10 \text{ mm}^{-1}$
$\beta = 95.513 \ (8)^{\circ}$	T = 293 (2) K
V = 2929.7 (5) Å ³	Prism, colourless
Z = 8	$0.60 \times 0.55 \times 0.32 \text{ mm}$

Data collection

2888 independent reflections 2388 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.074$
$\theta_{\rm max} = 26.0^{\circ}$
$h = -29 \rightarrow 29$
$k = -7 \rightarrow 7$
$l = -24 \rightarrow 24$
$w = 1/[\sigma^2(F_o^2) + (0.0946P)^2]$
+ 0.909P]
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{\rm max} = 0.37 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.33 \ {\rm e} \ {\rm \AA}^{-3}$

 Table 1

 Selected geometric parameters (Å, $^{\circ}$).

H-atom parameters constrained

O1-C2	1.351 (2)	C9-C10	1.511 (2)
O1-C1	1.376 (2)	N2-C11	1.340 (2)
C4-O3	1.235 (2)	N2-C8	1.446 (2)
C4-C3	1.427 (3)	N2-C10	1.459 (2)
C4-C5	1.457 (2)	C3-C2	1.342 (3)
C5-C1	1.338 (2)	O4-C11	1.213 (2)
C5-O2	1.357 (2)	C8-C7	1.519 (3)
C9-N1	1.452 (2)	N1-C6	1.463 (2)
N1-C9-C10	110.40 (14)	N2-C8-C7	109.25 (14)
C11-N2-C8	121.14 (16)	N1-C7-C8	109.62 (15)
C11-N2-C10	125.39 (17)	C9-N1-C7	111.21 (13)
C8-N2-C10	113.23 (15)	C9-N1-C6	112.41 (13)
N2-C10-C9	110.17 (14)	C7-N1-C6	113.51 (14)

Extinction correction: SHELXL97

Extinction coefficient: 0.0072 (13)

Table 2	
Hydrogen-bonding	geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O2-H2\cdots O3^i$	0.82	1.97	2.6941 (18)	147
O2-H2···O3	0.82	2.33	2.7527 (18)	113
$C6-H6A\cdots O2$	0.97	2.53	2.909 (2)	103
$C7-H7A\cdots O1$	0.97	2.54	3.060 (2)	114
$C8-H8B\cdots O4$	0.97	2.39	2.784 (3)	104
C10-H10A···O5	0.97	2.27	2.696 (2)	106

Symmetry code: (i) $\frac{1}{2} - x, \frac{3}{2} - y, -z$.

H atoms were included in calculated positions and treated using a riding model [C–H(aromatic) = 0.93 Å and C–H(CH₂) = 0.97 Å, with $U_{iso}(H) = 1.2U_{eq}$ (parent C atom); C–H(CH₃) = 0.96 Å and O–H = 0.82 Å, with $U_{iso}(H) = 1.5U_{eq}$ (parent C,O atom)].

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: WinGX (Farrugia, 1999) and PARST (Nardelli, 1995).

References

- Burgess, J., Fawcett, J., Russell, D. R., Hider, R. C Hossain, M. B., Stoner, C. R. & Helm, D. van der (1996). Acta Cryst. C52, 2917-2920.
- Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Koysal, Y., Işık, Ş., Köksal, M., Erdoan, H. & Gökhan, N. (2003). Acta Cryst. E59, o1975-o1976.

- Nardelli, M. (1995). J. Appl. Cryst. 28, 659. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Stoe & Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe & Cie, Darmstadt, Germany.
- Thirumurugan, R., Sundura Raj, S. S., Shanmugam, G., Fun, H.-K. Chinnakali, K., Chantrapromma, S. & Marappan, M. (1998). Acta Cryst. C54, 780-781.
- Yogavel, M., Selvanayagam, S., Velmurugan, D., Shanmuga Sundara Raj, S., Fun, H.-K., Marappan, M. & Kandaswamy, M. (2003). Acta Cryst. E59, 083-085.